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of the Cayley-Klein Groups 
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As a foundat ion for Klein's  fundamenta l  idea about the connection of  geometry 
and its motion group and the unified description of all Cayley-Klein  geometries, 
a method of group transitions including contractions as well as analytical continu- 
ations of  the groups is developed. The generators and Casimir operators of  an 
arbitrary Cayley-Klein  group are obtained from those of  the classical orthogonal 
group. The classification of  all possible transitions between the Cayley-Klein  
groups is given. The physically important  case of the kinematic groups is 
discussed. 

1. INTRODUCTION 

Sanjuan (1984) investigated the geometrical significance of the Inonu- 
Wigner contractions (Inonu and Wigner, 1953) and found that the very 
meaning of group contraction is deeply rooted in the relations of contrac- 
tions of the associated Cayley-Klein geometries. Lord (1985) related this 
idea to the projective characterization of the Cayley-Klein spaces in terms 
of absolutes. 

Pimenov (1965) gave a unified description of all 3 ~ n-dimensional 
Cayley-Klein geometries and built the transformations of the elliptic 
geometry into arbitrary Cayley-Klein geometry. In accordance with the 
Erlangen Program due to F. Klein, each geometry is associated with a 
motion group. Then the transformations of the geometry induce the transfor- 
mations of the related motion group. We have used this idea to investigate 
the orthogonal (Gromov, 1978, 1981, 1982), unitary (Gromov, 1984), and 
symplectic (Gromov, 1985) groups from the viewpoint of transformations. 
It must be emphasized that the transformations under consideration in- 
clude contractions as well as analytical continuations of groups (when, for 
example, the Euclidean group transforms into the Poincar~ one). The present 
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approach is based upon metrical concepts only and it is our hope that the 
method of transformations will be useful for physicists. 

The organization of  this paper is as follows: In Section 2 the three 
Cayley-Klein geometries on the line and their motion groups are regarded 
in detail. In Section 3 the motion groups of the nine Cayley-Klein geometries 
on the plane and their Casimir operators are studied. Section 4 is devoted 
to the generalization of the obtained results to higher dimensions. In Section 
5 the interpretation of the four-dimensional Cayley-Klein spaces as the 
kinematics is given. The classification of the contractions and analytical 
continuations of the Cayley-Klein motion groups is regarded in Section 6; 
and finally in Section 7 the principal conclusions of this work are stated. 

2. THE THREE FUNDAMENTAL GEOMETRIES ON A LINE 

We define the elliptic geometry on a line as follows. The circle S~* = 
{x*~ R2lxo*2+ x*~ 2= 1} on the Euclidean plane is invariant under rotations 

x*' =x* cos ~ * - x *  sin ~* 

x*' = x* sin q~ * + x* cos ~ *, ~* e (-Tr, or) (1) 

from the group S02. We identify diametrically opposed points on the circle 
and introduce the intrinsic coordinate ~:* -- x* /x*  into it. Then the rotations 
(1) on the plane R2 correspond to the translations on the line 

~* - -  a *  

s c*' - a* = tg ~* (2) 
l + ~ * a * '  

where ~ * c  ( -~- /2 ,  ~-/2) and a * c  R. The translations (2) form the motion 
group G1 of  the elliptic geometry on the line with the composition law 

a * ' -  a* + a* 
1 -a'a*1 (3) 

For the representation T(g(~*)) f(x*)=f(g-l(~p*)x*)  of  the group S02 
in the space of differentiable functions on R2 the generator 

X ' f  (x*) = ~ [ T(g( ~ *) )f(x*) ]]~ .=o 

corresponding to the rotation (1) assumes the form 

, , , , _ ~ o  _ x  , o 
X (Xo, xl ) : xl ox* ox---~l (4) 
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It is easy to obtain the generator Z*(~*) of  the representation of the group 
G1 in the space of differentiable functions on the line 

z * ( ~ : * ) :  (1 + ~:,2) a (5) a~* 
For completeness we give the form of the generator of  the rotation (1), 

We define now the fundamental  map 

~: R2-~ R2(jl) 

tpx* = Xo, ~px* =j~x, (7) 

where Cartesian coordinates x*,  x~= ~ R2, Xo, xx ~ R2(Jl), the parameter  Jl 
may be equal to the real unit 1 or to the Clifford dual unit ~l or to the 
imaginary unit i. The dual unit is not equal to zero, buts its square is 2 /,1 ~ 0 .  

Division of a real or complex number  by the dual unit is not defined. We 
assume that the division of a dual unit by itself is equal to the real unit, 
~ / h  = 1. The las~ i,roperty is equivalent to the fact that the equation a~  = b~ 
has only one solution a = b in the real or complex number  field. 

The fundamental  map ~p transforms the Euclidean plane R2 into the 
plane R2(jO, the geometry of which is defined by the metric x2(j~)= 

2 - - - 2  2 Xo• Then, as is well known, R2(i) is the Minkowskian plane, R2(~) 
is the Galilean plane, and R2(1 ) = R 2 is the Euclidean plane. 

Our main idea is that the fundamental  map qJ of  geometries induces 
the transformations of  associated groups of motions and their algebras. We 
now show how to obtain the transformations of  motions and generators. 

The measure of  angles on the Euclidean plane R2 is defined by the 
ratio * * X 1 / X o ,  which goes to j~xl/xo under the map (7). Then the angle 
transforms as follows: ~0r : j 1 r  Replacing in (1) the coordinates and the 
angle according to the map and multiplying the second equation by the 
parameter  j~-~, we obtain the rotations on the plane R2(j l ) ,  

' - Xo cos jl~p - xljl  sin jffp X 0 - -  

(8) 
x'l = xoj l  I sin jlq~ + xl cosjaq~ 

The function of the dual argument is determined by its Taylor series 
expansion. Specifically, we have cos L~p = 1, sin ~lq~ = t~q~. The rotations (8) 
form a one-parameter  group, which will be denoted by the symbol S02(jO. 
The elements of  the group S02(~1) are the Galilean transformations and 
the elements of  the S02(i)  are the Lorentz transformations if xo is regarded 
as a temporal  axis and x~ as a spatial one. The group parameters ~ belong 
to the domains qb(jl) , where ~ ( 1 ) =  ( -7 r /2 ,  7r/2), dP(~1)= q5(i)= R. 
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The circles 

Sl(jl) = {x ~ R2(jOIx2o+j~x~ = 1} 

on the planes R2(jl) (Figure 1) are invariant under the rotations (8). 
Identification of the diametrically opposed points on the circles gives the 
upper semicircle fo r j l  = 1 or the upper simply connected part of the circles 
for jl  = ~1, i. The intrinsic coordinate ~:* transforms as follows: ~:* =j~:. 
Then for the translations on the line we have 

~:,= ( - a  
1 +j~(a' a =j~' tgjlq~ (9) 

where a ~ R. The transformations (9) generate the one-parameter groups of 
motion GI(jO on the elliptic line (jl = 1), on the parabolic line (jl = tl), or 
on the hyperbolic line (jl = i). 

In the space of differentiable functions on the R2(jl) the generator 
X(x)  of the representation of the group S02(j~) is defined as 

Xf(x)  = ~ [ T(g(~o))f(x)]l,~=o 

Under the map ~b, the derivative d/dq~* goes into j?ld/dr therefore, we 
n e e d  to multiply the generator X*(~bx*) by the parameter jl  in order to 
have the generator X(x) .  The law of transformation of the generator takes 
the form 

X(x)  =j,X*(~bx*) .2 0 0 = J 1 X 1  - - -  X 0 (10) 
OXo Ox~ 

The same is true for the generator Z, 

O (11) Z( s  c) = jxZ*(~/,~:*) = (1 +j2~:2) 0--~ 

f -1 

a 

F ig .  1. 

XO 

7 Xt 

\ 

\ \  ~ /  X# 
/ ' ' \  

/ \ 

b s 

T h e  c i r c l e s  SI(jl) o n  t h e  p l a n e s  R 2 ( j l  ). ( a )  j~ = 1, (b )  J l  = t l ,  (c)  J l  = i. 
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It is easy to determine the law of transformation of the matrix generator 
(6): the nonzero matrix element -1  above the principal diagonal is replaced 
by _j2 and all the others are not changed, i.e., 

(01 = - j 1  ( 1 2 )  
0 

The groups GI(jl) and S02(jl) are very similar (their Lie algebras are 
isomorphic). Hereafter we shall understand under the Cayley-Klein groups 
the groups GI(jl) as well as S02(jO and under the Cayley-Klein spaces 
the spaces SI(jl) as well as R2(jl). The same rule will be observed for higher 
dimensions. 

We have regarded in detail the simplest groups S02( j l ) ,  G~(j~) in order 
to demonstrate the principal ideas of the method of transformations when 
they are not camouflaged by the mathematical calculations. The main stages 
are as follows: (i) one defines the map q, from the Euclidean space to the 
arbitrary Cayley-Klein space; (ii) one finds the transformation laws for the 
motions, generators, etc., of  a group; and (iii) one determines the motions, 
generators, etc., of  the Cayley-Klein group from the appropriate quantities 
of the classical orthogonal group with the help of (ii). The simple method 
of  transformations enables us to describe all Cayley-Klein groups knowing 
only the classical orthogonal group. 

At first sight there are two different processes in a group theory. One 
is a group contraction as defined by lnonu and Wigner (1953), and the 
other is an analytical continuation of a group. The last is used, for example, 
in field theory when imaginary time is regarded. From the viewpoint of 
transformation, both processes have a common nature, namely the replace- 
ment of real group parameters by dual ones (contraction) or by imaginary 
ones (continuation) that are the continuation from the real number field 
into the dual or complex ones. 

3. THE NINE CAYLEY-KLEIN GROUPS 

The map 

tp: R3-> R3(j) 

tPX*o = Xo, ~X* =j lx l ,  tPx*2 =jlj2x 2 (13) 

where ] = ( j l , j2);  j l  =- 1, tq,  i ;  j2 = 1, ~2, i; the ~l and ~2 are two different 
dual units with the properties ~ = 0 ,  ~ = 0  but ~1~2 = ,2~1 # 0 ;  and *k/*k = 
1, k = l , 2  (but not ~1/L2 or ~2/~1; these constructions are not defined) 
transforms the three-dimensional Euclidean space into the spaces R3(j). 
The nine Cayley-Klein plane geometries are realized on the spheres 

S 2 ( j ) =  �9 2 .2 2 . 2 . 2  2 {X E e3(J)lXo"~JlX 1 -t.-a 1J2X2 -- 1} 
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in these spaces. Table I gives the identification of the Cayley-Klein 
geometries with the parameters j. 

The angle * x~}, /.~ < u, /~, v =0,  1, 2, qL,~ in the coordinate plane {x*, * 
of the space R3 is determined by the ratio * * x~/x,, and transforms under the 

v 
map (13) as ~0~*~ = (II,.=~+lj,.)~o.~. Then, as in the preceding section, we 
obtain the rotations in the plane {x~,, x~} of the space Rs(j) in the form 

x~. = x~. cos(~&., f i j m ) - x ~ ( f i j , . ) s i n ( ~ . ,  f i j m )  
m = p . + l  \ m = k ~ + l  m = / ~ + l  

( ) (  ) ( ) X~=Xl~ ~I j~l sin ~.~ fi  jm +x~cos  ~.v fi  jm (14) 
\ m = ~ + l  m = / * + l  m = / ~ + l  

t __ x;~ - x a ,  h #/z, v 

The matrix generators of rotations are 

Y01 = 0 , Y02  "~- 0 0 , Y12 = 0 2 2 (15) 

0 0 0 1 

They form the basis of the Lie algebra of the group SOs(j). 
The transformation laws of the generators of the representation of the 

group S O 3 ( j )  in the space of differentiable functions on the R 3 ( j )  a r e  the 
same as those of the angles, namely 

X,.,.(x) = (,,,=~+lj.,)X*,.( q,x* ) (16) 

and the generators are 

x o(x) ( l:I o 0 = J,nlX,.---x~.-- (17) 
m=~,+l ] OX~ OX,. 

Knowing the generators, it is easy to get the Lie brackets of the Lie 
algebra of the motion group. But we obtain the Lie brackets from those of 

Table I. The Nine Cayley-Klein Geometries 

J l =  1 Jl = ~1 Jl = i 

J2 = 1 Elliptic E u c l i d e a n  L o b a c h e v s k i a n  

(hyperbolic) 
Jz = ~2 Semielliptic Galilean Semihyperbolic 

(co-Euclidean) (co-Minkowskian) 
J2 = i Anti-de Sitter Minkowskian De Sitter 
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the orthogonal group. We introduce new designations for the generators: 
X*I = H*,  Xo*2 = P*, X*2 = K*. As is well known, the Lie brackets of  the 
group S03 are 

[ n * ,  P*] = K*,  [P*, K*] = H*,  [H*,  K*] = - P *  (18) 

The generators of the Lie algebra of the group S03 are transformed as 
follows: H =j lH* ,  P = j l j 2 P * ,  K =j2K*.  Then H* =j~lH, P* =j~lj-~]p, 
K* =j2~K. Substituting these formulas for the Lie brackets (18) and multi- 
plying each Lie bracket by its denominator, we obtain the Lie brackets of  
the groups S 0 3 ( j ) :  

[H, P] =j~K, [P, K] =j2H, [H, K] = - P  (19) 

The Cayley-Klein spaces S2(j) for j~ = 1, ~1, i and j2 = ~2, i may be 
regarded as kinematics, in which case the intrinsic coordinate ~:~ = XJXo is 
interpreted as a temporal axis and so2= x2/xo as a spatial one. Then the 
generators of  the groups SO3(j) may be interpreted as follows: H is the 
generator of the time translation, P is the generator of  the space translation, 
and K is the generator of the Galilean transformation for J2 = ~2 or of  the 
Lorentz transformation for j2 = i. 

The requirement that the final formulas should not contain undefined 
expressions like - 1  suggests a way to find the transformation laws of the 
algebraic constructions. Let an algebraic quantity Q* be some function of 
algebraic quantities AI* , . . . ,  A*, i.e., Q* = Q * ( A * , . . . ,  A*). Let the trans- 
formation laws of A*,..., . ,  A* be known, A1 = a~A*~,... ,  Ak = akA*, where 
the coefficients a~,. , . ,  ak are products of  the parameters j. Substituting 
A* = a l ~ A ~ , . . . ,  A* = a ~ A k  for the function Q*, we obtain the function 
Q * ( a l ~ A ~ , . . . , a ~ l A k ) ,  which contains, generally speaking, undefined 
quantities when the parameters ] are dual. Therefore, the last function must 
be multiplied by a coefficient q such that the final function is well defined. 
The transformation law of  Q is then 

Q( A a , . . . , Ak ) = qQ*( a l l  A1, . . . , a kl Ak  ) (20) 

We demonstrate this with the help of the Casimir operator. The only 
Casimir operator of the group S03 is given by 

C*(H*,  P*, K * ) =  H*2+ p , 2 +  K,2  (21) 

Substituting H* =j~IH, P* =j~lj~lp,  K* = j~ IK  in the formula (21), we 
obtain 

C * ( j l ' H , . . .  ) = j~-2H2 +j~-2jz2P2 + j 2 2 K  2 (22) 

When j~ = ~ ,J2 ---- t2 the most singular coefficient in (22) is j72j~ -2. Multiplying 
both parts of  equation (22) .2 .z by JiJ2, we are safe from undefined quantities. 
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Then the transformation law and the formula for the Casimir operator of 
the group SO3(j) are in the form 

C2( H, . . . " .2.2 , .-1 . ; j ) = j , j 2 C z ( j ,  H, . . ) = j Z H 2 + P 2 + j ~ K 2  (23) 

The Casimir operator of the two-dimensional Galilean group S 0 3 ( q ,  ~2) 
is well known to be C2(~, ~2) = p2 (see L6vy-Leblond, 1971); for the two- 
dimensional Poincar6 group S03(L~, i) it is given by the expression 
C2(~ ,  i ) = P 2 - H 2 ;  and the Casimir operator of the group S03(i ,  1)= 
S 0 ( 2 ,  1) is equal to C2(i, 1 ) = H 2 + P Z - K  2 (Mukunda, 1967). All these 
Casimir operators are given by equation (23) under the appropriate values 
of parameters j. 

4. G E N E R A L I Z A T I O N  TO H I G H E R  D I M E N S I O N S  

The n-dimensional Cayley-Klein geometries are realized on the spheres 
k 

in the spaces R.+~(]) which are obtained from the Euclidean space R.+I 
by the map 

0: R.+I-~R.+~(I) 

~IXO ~ m- X0 ' I]/X~ = I j "  xk ( 2 4 )  

where j = ( j ~ , . . . , j , ) ;  jk= l ,~k , i ;  ~k~r=~r~k#0 for k # r ,  but ~ = 0 ,  k=  
1 ,2 , . . . ,  n. 

The rotations in the planes {x., x~}, the transformation laws of the 
generators, and the formulas for these generators are given by (14), (16), 
and (17), respectively, but /~, v=0,  1 , . . . ,  n,/x < v. The nonzero matrix 
elements of the rotation generators are 

The Lie brackets (or commutators) of the group SO.+I(j) are most 
easily constructed from those of S0.+1,  as was done in Section 3. The 
nonzero commutators are 

l \  m =~1-~-1 

1" X/t/, .... /~.2 it21 : ~(  f i  ~ ) X  (26) 
Jrn  ~lp-2,  1L61 ~ l,.Ib2~ lJl : ~2 

1 
\ rtl =~2+1 

~ - - X l d .  ll,2. I ~.s ~ ].~2 : /11 "~ P2 
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As is well known, there are [(n + 1)/2] independent Casimir operators 
of the group $0,,+1, where Ix] is the integral part of the number x. For 
even n = 2k, the Casimir operators are given by (Barut and Raczka, 1977) 

. �9 ~ * �9 C2p(X~.) = _ ... X*~ ,  X ~ . ~ X . ~  (27) 
t ~ l , . . . , O t 2 p  = 0 

where p = 1, 2, . . . ,  k. The operator 

C ~1/2(~'* ~ = ~ e ~'* X* X* (28) 
\ - ~  ~ /  O ~ l . , . ~ n + l -  ~ Ot lo t2  Ot3Ot 4 �9 �9 . OLnan+ 1 

r  = 0  

is added to the operators (27) for odd n = 2 k + l ,  where e ......... is the 
antisymmetric unit tensor. 

Another definition of the Casimir operators was given by Gel 'fand 
(1950). By his definition the Casimir operator C2"~ is the sum of all 2p- 
dimensional principal minors of the antisymmetric matrix A which is 
constructed from the generators X~,~, namely ( A ) ~  = X,~,* (A)~,-- -X,~.* 

We get the Casimir operators of SO,+I(j) in a quite similar manner as 
in Section 3. From (16) we have X*~= (I-[~=,+,jT, a)x,~ and substitute in 

�9 �9 rl 2 (27). The addend Xo,,X,,o... X,,o has the most singular coeffioent 1-[,, =, J~ P. 
Then the transformation laws of the Casimir operators C2p are in the form 

C2p(j'~X~v)=(m~lj2mP)C*2p(X~vm v=I~+,j~n 1) (29) 

and the formulas for the operators themselves are 

) C2p(j) = 1-I j~a 
........ :p=o a j ~  l lr=ttr+a 

x x,~,~,~x,,~,~.., x,~,~, (30) 
where /Zr=min(a~,ar+l),  v~=max(ar,  a~+,), r = l , 2 , . . . , 2 p - 1 ,  /~2p= 
min(a , ,  a2p), and v2p = max(t~,, a2p). 

The Casimir operators C2"~ and C .1/2 after replacing the generators 
according to (16) must be multiplied by the least common denominators 
of the coefficients of the addend in the sums. These least common 
denominators are easily found with the help of mathematical induction. 
We give the final form for the transformation laws of Casimir operators: 

c ; A j ;  x . ~ )  = ' ~ ' ~  I I  "~ *' Jm Jn-m+l J1 C2p Xt,~ ~ Jr'-a (31) 
l l = p , + a  

r  ( n - - 1 ) / 2  "~ 

C1/2(j'~Xtxv)~~ J(n+a)/2 m~ jmjrlm--m+a) 

. ) 
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The operator Cap(j) [or C~/2(j)] commutes with all generators X,~ of 
the group SO,+1(j). Indeed, when we calculate the zero equal commutator 
[c~p, * X , , ]  we have the addends of the same form but with a different sign 
(plus or minus). The sum of these addends is equal to zero. Under the 
transformations (16) and (29), both these addends are multiplied by the 
same combination of parameters with even-power products ofjk. Therefore 
both addends either simultaneously change sign or are equal to zero or do 
not change, but in any case their sum is equal to zero. Besides the operators 
C2p(j) for p =  1, 2 , . . . ,  [ ( n + l ) / 2 ]  are linearly independent because they 
are formed by generators X , .  of different degree. Using the method of 
Chaichian et al. (1983), we can prove that for any j the number of  Casimir 
operators of  SO,+~(j) is equal to [(n + 1)/2]. Thus, we have constructed all 
Casimir operators of the group SO.+~(j) for any j parameters. 

5. KINEMATICS AS THE CAYLEY-KLEIN SPACES 

Starting from very general physical principles, Bacry and L~vy-Leblond 
(1968) classified all possible kinematics. Almost all kinematics are four- 
dimensional Cayley-Klein spaces S4(j) with the appropriate physical inter- 
pretation of  the intrinsic coordinates as spatial and temporal ones. There 
are two possibilities (Gromov, 1986). 

First we can regard the coordinate ~:1 = x l / x o  = t as the temporal axis 
and the coordinates ~:k+l = xk+l/Xo = rk, k = 1, 2, 3, as the spatial axes. In 
this case the physical postulate of isotropic space restricts the parameters 
J3, j4 as follows: J3 =j4 = 1 and the postulate "inertial transformations (or 
boosts) in any given direction form a noncompact  subgroup" restricts the 
parameters ja, namely j2 = t2, i (see Figure 1). Table I gives the identification 
of the Cayley-Klein spaces S4(j~ ,j2,1, 1)= S4(j l ,  Ja) with six kinematics. 

The generators of  the group S05(j~,  j2, 1, 1) = S05(j~,  j2) are physically 
interpreted as follows: X01 = H is the generator of time translation; Xo,k+~ = 
Pk, k = 1, 2, 3, are the generators of space translations; X~,k+~ = Kk are the 
boost generators; and X34 = J1, X24 = -12 ,  and X23 = J3 are the generators 
of spatial rotations. The Lie brackets of these generators are 

[J, J] = J, [J, P] = P, r J, K] = K 

[H , J ]  =0,  [H,K]  =P ,  [H, P] = - j ~ K  (33) 

[V, P] :JaJ2J,'2 .a [K, K] =j~J, [Pk, Kt] = .2 -J2~kIH 

where the notation [X, Y] = Z is shorthand for [Xk, Yl] = ektmZ,~. 
There are two independent Casimir operators of  the group S05 ,  

C*' = H*2 + p,2 + K,2 + j , 2  
(34) 

C4" = ( H ' J *  - P* x K*) 2 + (P*, j . )2  + (K*, j . )2  
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Taking into account the transformation laws of the generators of the group 
SOs(jl,j2), H = j I H * ,  P=j I j2P* ,  K=j2K*, and J = J * ,  we obtain from 
equation (31) the Casimir operators of SOs(jl,j2) in the form 

C'2(jl , j2) = j~ H 2 + p2 +j~K 2 + j2 j~j2 
(35) 

C'4(jl, j2) = ( j ~ H J -  P • K) 2 +j~(P, j)2 +j~j~(K, j)2 

For Jl = j 2  = i the formulas (35) give the Casimir operators of the de Sitter 
group, and for j~= 1 and j2 = i they give those of the Poincar6 group 
(compare with Barut and Raczka, 1977). For j~ = 1, i and j2 = t2 we have 
the Casimir operators of the semielliptic and semihyperbolic groups (or the 
Newton-Hooke  groups) (compare with Derom and Dubois, 1972). For 
j~ = g l  and j2 = L2 we obtain from (35) the Casimir operators of the Galilean 
group (compare with L6vy-Leblond, 1971). 

The second way is to interpret the geometrical coordinate r = x4/xo 
as the temporal axis and the coordinates sck = xk/xo, k = 1, 2, 3, as the spatial 
axes. Then the physical interpretation of the generators of the group 
SOs(ja, 1, 1, t4) follows from their notation, namely 3204 =/4,  X0k = - P k ,  
Xk4 = Kk, k =  1, 2, 3, X23= J1, Xl3 =-J2 ,  X12=J3 �9 We may write the Lie 
brackets of these generators 

[J, J] = J, [J, P] = P, [J, K] = K 

[H, J] = 0, [H, K] = 0, [H, P] =j2K 

[P, P] "2 =]  ~J, [K, K] : 0, [Pk, Kt] = 3ktH 

(36) 

Comparing (36) with the Lie brackets of Bacry and L6vy-Leblond (1968), 
we find that the group SOs(t1, 1, 1, t4) is identical with the Carroll kinematic 
group first described by L6vy-Leblond (1965), the group SOs(I, 1, 1, t4) with 
the kinematic group ISO(4) (or P+), and SOs(i, 1, 1, t4) with the para- 
Poincar6 group P'_. Further taking into account that the parameter Jl 
defines the sign of  constant curvature of Caytey-Klein spaces, we conclude 
that the group SOs(I, 1, 1, t4) is the motion group of the Carroll kinematic 
with positive curvature, and the group SOs(i, 1, 1, t4) is the motion group 
of  the Carroll kinematic with negative curvature. The Casimir operators of 
the Carroll kinematic groups are obtained from (34) by renotation of the 
generators according to the new interpretation and with the help of the 
transformation laws (31). They are written in the form 

C'2(j,) = Hz+j2K 2 
(37) 

C~(jI) = (H  J -  a x K)E+j~(K, j)2 

For J1 = L~ the Casimir operators (37) coincide with those of the Carroll 
group found by L6vy-Leblond (1965). 
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Bacry and L6vy-Leblond have described 11 kinematic groups. Nine 
of  them are geometrically interpreted as the Cayley-Klein spaces. The 
kinematic group "para-Gal i le i"  G '  is obtained from the Galilei group 
S 0 5 ( ~ ,  ~2, 1, 1) by the exchange P ~ K, K ~ P, that is, by the new interpreta- 
tion of generators when the space translation generators of  the Galilei 
kinematic are regarded as the boost generators of  the "para-Gal i le i"  kine- 
matic and vice versa. The static kinematic is not identified with any Cayley- 
Klein space. 

6. THE CLASSIFICATION OF THE TRANSITIONS 

Up to this point we have regarded the transition from the Euclidean 
geometry to arbitrary Cayley-Klein geometry and the induced transition 
from the classical orthogonal group to the motion group of arbitrary Cayley- 
Klein space. It is useful to investigate also the transitions between all 
Cayley-Klein  geometries. 

Let us (formally) define the map 

to: R,+I(j) ~ R,+I(j ' )  

k 
t 

WXo Xo,  toxk = X~k ~I .r . - I  = J m J m ,  k = 1, 2 , . . . ,  n (38) 
rr/=l 

This map induces transformations of  the generators and Casimir operators 
of  the related groups. Their transformation laws are obtained from pre- 
viously determined ones by the replacement of  the parameters jk with the 
parameters  f k j ~  1. We denote these transformations of  generators and 
Casimir operators by 12. The inverse transformations l~ -1 are obtained from 
12 by exchanging symbols with a prime for symbols without one and vice 
versa. 

The map o~ and the transformation ~ as well as w -1 and 12-1 are not 
well defined for all Cayley-Klein  geometries and groups, considering that 
the symbols /~k 1, LmLk I for k ~ m are not defined. We define only ~k~ 1= 1 
for k = 1, 2 , . . . ,  n. Therefore, in the case where some parameter  jm is equal 
to the dual unit, jm = ~,,, the maps (38) are valid when and only when a 
primed parameter  with the same index is equal to the same dual unit, i.e., 
j "  = ~,,. A simple analysis of  the map (38) and the inverse map 

to-l: R,+1(j') ~ R,+I(j) 

k 
( .D-lXto .~- X o ,  o ) - l x l  k - -  X k H " . i - 1  

- -  JmJrn , k = 1, 2 , . . . ,  n (39) 
m = l  

from the viewpoint of  the validity of  the transformations gives the following 
classification theorem (Gromov,  1982) (the same results hold for 12 and 



Transitions of Cayley-Klein Groups 619 

~--1 as far as they include the same combinations of  parameters j 'kjk 1, jkjtk -1 
as to and to-l). 

Classification Theorem. 1. Let SO,+I(j) be the motion group of the 
Cayley-Kle in  space Rn+~(j) with Jl ~ ~ , . . - ,  and jn r ~n; and let SOn+l(j') 
be the motion group of the arbitrary Cayley-Klein  space Rn+a(j'); then 
R,+~(j') = toR,+l(j) and SOn+l(j') =flSO~+l(j) .  I f  j'~ ~ ~ , . . . ,  and j'~ ~ L~, 
then to and [l are one-to-one mappings a n d  R n + ~ ( j ) = t o - l R n + l ( j ' ) ,  
SOn+l(j) = ['~-'SOn+l(j'). 

2. Let SO,+I(j) be the motion group of  the Cayley-Klein  space R,+1(j) 
with AL = ~ki . . . .  ,jk~ = % and SO,+~(j') be the motion group of the space 
R,+~(j') with j ' r ,= %, . . . , j ' rm  = ~.., m >  s; then R.§ toR.+~(j), 
SO,+I(j') = I~SO,+I(j) on the condition that the number  set (rl ,  r 2 , . . . ,  rm) 
contains the number  set (kl ,  k2 . . . .  , k~). The transformations to and [~ are 
one-to-one if and only if s = m; k~ = r~ . . . . .  ks = rm. In this case R,+~(j) = 
to-~ R,+l(j') and SOn+l( j )  : [-~-lSOn+l(j ') .  

From this theorem we have the following results. 

Corollary. The group SO,+~(j) for any parameters j may be obtained 
from any group SO,+I(j) the parameters  of  which are not dual. 

Of  course the simplest groups are the classical ones and we began in 
the previous sections from these groups. 

The contraction scheme for the kinematic groups (Bacry and L6vy- 
Leblond, 1968; Sanjuan, 1984) easily follows from the classification theorem. 
Indeed, according to the corollary, the de Sitter group SOs(i, i, 1, 1) contracts 
into the Poincar6 S05(~1, i, 1, 1) or the Galilei SOs(~l, ~2, 1, 1) groups or 
the Newton -Hooke  group SOs(i,~2, 1,1). The Newton -Hooke  group 
SO5(1, L2, 1, 1) or SOs(i, ~2, 1, 1) according to the second part  of  theorem 
contracts only into the Galilei group. The transitions from de Sitter group 
to the Carroll groups S O s ( j l  , 1, 1, ~4) are made with the help of  contractions 
and analytical continuations. 

7. CONCLUSIONS 

Starting from Klein's  fundamental  idea that each geometry is defined 
by its motion group and using as a mathematical  tool the unified description 
of  all Cayley-Klein  geometries, we have developed a simple but effective 
method of transitions between groups that gives the opportunity to obtain 
the generators, commutators ,  and Casimir operators of  the motion group 
of  an arbitrary Cayley-Klein  space from those of  the classical orthogonal 
group. 

Inonu-Wigner  contractions and analytical continuations of  the groups 
are naturally unified in the developed approach.  The common nature of  
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both processes was displayed, namely the continuation of the real group 
parameters into the dual or complex number fields. 

The structure of transitions between the Cayley-Ktein groups is 
described by a classification theorem. Only contractions restrict the possible 
transitions between the groups. 

Physically important kinematic groups naturally arise in our approach. 
If one accepts that a physical theory is based on the group of the invariants 
of the physical phenomena described by this theory, then the method of 
the transitions provides a tool for the simultaneous investigation of one or 
another set of physical theories connected with each other by transitions. 
The special theory of relativity and classical mechanics, and field theory 
and statistical mechanics are well-known examples of such sets of theories. 
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